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Univariate time series modelling and forecasting

Learning Outcomes

In this chapter, you will learn how to

● Explain the defining characteristics of various types of
stochastic processes

● Identify the appropriate time series model for a given data
series

● Produce forecasts for ARMA and exponential smoothing models

● Evaluate the accuracy of predictions using various metrics

● Estimate time series models and produce forecasts from them
in EViews

5.1 Introduction

Univariate time series models are a class of specifications where one attempts

to model and to predict financial variables using only information con-

tained in their own past values and possibly current and past values of an

error term. This practice can be contrasted with structural models, which

are multivariate in nature, and attempt to explain changes in a variable

by reference to the movements in the current or past values of other (ex-

planatory) variables. Time series models are usually a-theoretical, implying

that their construction and use is not based upon any underlying theo-

retical model of the behaviour of a variable. Instead, time series models

are an attempt to capture empirically relevant features of the observed

data that may have arisen from a variety of different (but unspecified)

structural models. An important class of time series models is the fam-

ily of AutoRegressive Integrated Moving Average (ARIMA) models, usually

associated with Box and Jenkins (1976). Time series models may be useful
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when a structural model is inappropriate. For example, suppose that there

is some variable yt whose movements a researcher wishes to explain. It

may be that the variables thought to drive movements of yt are not ob-

servable or not measurable, or that these forcing variables are measured

at a lower frequency of observation than yt . For example, yt might be a

series of daily stock returns, where possible explanatory variables could

be macroeconomic indicators that are available monthly. Additionally, as

will be examined later in this chapter, structural models are often not

useful for out-of-sample forecasting. These observations motivate the con-

sideration of pure time series models, which are the focus of this chapter.

The approach adopted for this topic is as follows. In order to define,

estimate and use ARIMA models, one first needs to specify the notation

and to define several important concepts. The chapter will then consider

the properties and characteristics of a number of specific models from the

ARIMA family. The book endeavours to answer the following question: ‘For

a specified time series model with given parameter values, what will be its

defining characteristics?’ Following this, the problem will be reversed, so

that the reverse question is asked: ‘Given a set of data, with characteristics

that have been determined, what is a plausible model to describe that

data?’

5.2 Some notation and concepts

The following sub-sections define and describe several important concepts

in time series analysis. Each will be elucidated and drawn upon later in

the chapter. The first of these concepts is the notion of whether a series is

stationary or not. Determining whether a series is stationary or not is very

important, for the stationarity or otherwise of a series can strongly influ-

ence its behaviour and properties. Further detailed discussion of station-

arity, testing for it, and implications of it not being present, are covered

in chapter 7.

5.2.1 A strictly stationary process

A strictly stationary process is one where, for any t1, t2, . . . , tT ∈ Z , any

k ∈ Z and T = 1, 2, . . .

Fyt1, yt2, . . . , ytT
(y1, . . . , yT ) = Fyt1+k, yt2+k, . . . , ytT +k(y1, . . . , yT ) (5.1)

where F denotes the joint distribution function of the set of random vari-

ables (Tong, 1990, p.3). It can also be stated that the probability measure

for the sequence {yt} is the same as that for {yt+k}∀ k (where ‘∀ k’ means
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‘for all values of k’). In other words, a series is strictly stationary if the

distribution of its values remains the same as time progresses, implying

that the probability that y falls within a particular interval is the same

now as at any time in the past or the future.

5.2.2 A weakly stationary process

If a series satisfies (5.2)--(5.4) for t = 1, 2, . . . , ∞, it is said to be weakly or

covariance stationary

(1) E(yt ) = μ (5.2)

(2) E(yt − μ)(yt − μ) = σ 2 < ∞ (5.3)

(3) E(yt1 − μ)(yt2 − μ) = γt2−t1 ∀ t1, t2 (5.4)

These three equations state that a stationary process should have a con-

stant mean, a constant variance and a constant autocovariance structure,

respectively. Definitions of the mean and variance of a random variable

are probably well known to readers, but the autocovariances may not be.

The autocovariances determine how y is related to its previous values,

and for a stationary series they depend only on the difference between

t1 and t2, so that the covariance between yt and yt−1 is the same as the

covariance between yt−10 and yt−11, etc. The moment

E(yt − E(yt ))(yt−s − E(yt−s)) = γs, s = 0, 1, 2, . . . (5.5)

is known as the autocovariance function. When s = 0, the autocovariance at

lag zero is obtained, which is the autocovariance of yt with yt , i.e. the vari-

ance of y. These covariances, γs , are also known as autocovariances since

they are the covariances of y with its own previous values. The autocovari-

ances are not a particularly useful measure of the relationship between y

and its previous values, however, since the values of the autocovariances

depend on the units of measurement of yt , and hence the values that they

take have no immediate interpretation.

It is thus more convenient to use the autocorrelations, which are the

autocovariances normalised by dividing by the variance

τs =
γs

γ0

, s = 0, 1, 2, . . . (5.6)

The series τs now has the standard property of correlation coefficients

that the values are bounded to lie between ±1. In the case that s = 0, the

autocorrelation at lag zero is obtained, i.e. the correlation of yt with yt ,

which is of course 1. If τs is plotted against s = 0, 1, 2, . . . , a graph known

as the autocorrelation function (acf) or correlogram is obtained.
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5.2.3 A white noise process

Roughly speaking, a white noise process is one with no discernible struc-

ture. A definition of a white noise process is

E(yt ) = μ (5.7)

var(yt ) = σ 2 (5.8)

γt−r =
{

σ 2 if t = r

0 otherwise
(5.9)

Thus a white noise process has constant mean and variance, and zero

autocovariances, except at lag zero. Another way to state this last condi-

tion would be to say that each observation is uncorrelated with all other

values in the sequence. Hence the autocorrelation function for a white

noise process will be zero apart from a single peak of 1 at s = 0. If μ = 0,

and the three conditions hold, the process is known as zero mean white

noise.

If it is further assumed that yt is distributed normally, then the sample

autocorrelation coefficients are also approximately normally distributed

τ̂s ∼ approx. N (0, 1/T )

where T is the sample size, and τ̂s denotes the autocorrelation coefficient

at lag s estimated from a sample. This result can be used to conduct

significance tests for the autocorrelation coefficients by constructing a

non-rejection region (like a confidence interval) for an estimated autocor-

relation coefficient to determine whether it is significantly different from

zero. For example, a 95% non-rejection region would be given by

±1.96 ×
1

√
T

for s �= 0. If the sample autocorrelation coefficient, τ̂s , falls outside this

region for a given value of s, then the null hypothesis that the true value

of the coefficient at that lag s is zero is rejected.

It is also possible to test the joint hypothesis that all m of the τk corre-

lation coefficients are simultaneously equal to zero using the Q-statistic

developed by Box and Pierce (1970)

Q = T

m
∑

k=1

τ̂ 2
k (5.10)

where T = sample size, m = maximum lag length.

The correlation coefficients are squared so that the positive and nega-

tive coefficients do not cancel each other out. Since the sum of squares of

independent standard normal variates is itself a χ2 variate with degrees
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of freedom equal to the number of squares in the sum, it can be stated

that the Q-statistic is asymptotically distributed as a χ2
m under the null

hypothesis that all m autocorrelation coefficients are zero. As for any joint

hypothesis test, only one autocorrelation coefficient needs to be statisti-

cally significant for the test to result in a rejection.

However, the Box--Pierce test has poor small sample properties, implying

that it leads to the wrong decision too frequently for small samples. A

variant of the Box--Pierce test, having better small sample properties, has

been developed. The modified statistic is known as the Ljung--Box (1978)

statistic

Q∗ = T (T + 2)

m
∑

k=1

τ̂ 2
k

T − k
∼ χ2

m (5.11)

It should be clear from the form of the statistic that asymptotically (that

is, as the sample size increases towards infinity), the (T + 2) and (T − k)

terms in the Ljung--Box formulation will cancel out, so that the statis-

tic is equivalent to the Box--Pierce test. This statistic is very useful as a

portmanteau (general) test of linear dependence in time series.

Example 5.1

Suppose that a researcher had estimated the first five autocorrelation co-

efficients using a series of length 100 observations, and found them to be

Lag 1 2 3 4 5

Autocorrelation coefficient 0.207 −0.013 0.086 0.005 −0.022

Test each of the individual correlation coefficients for significance, and

test all five jointly using the Box--Pierce and Ljung--Box tests.

A 95% confidence interval can be constructed for each coefficient using

±1.96 ×
1

√
T

where T = 100 in this case. The decision rule is thus to reject the null

hypothesis that a given coefficient is zero in the cases where the coeffi-

cient lies outside the range (−0.196, +0.196). For this example, it would

be concluded that only the first autocorrelation coefficient is significantly

different from zero at the 5% level.

Now, turning to the joint tests, the null hypothesis is that all of the

first five autocorrelation coefficients are jointly zero, i.e.

H0 : τ1 = 0, τ2 = 0, τ3 = 0, τ4 = 0, τ5 = 0
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The test statistics for the Box--Pierce and Ljung--Box tests are given respec-

tively as

Q = 100 × (0.2072 + −0.0132 + 0.0862 + 0.0052 + −0.0222)

= 5.09 (5.12)

Q∗ = 100 × 102 ×
(

0.2072

100 − 1
+

−0.0132

100 − 2
+

0.0862

100 − 3

+
0.0052

100 − 4
+

−0.0222

100 − 5

)

= 5.26 (5.13)

The relevant critical values are from a χ2 distribution with 5 degrees of

freedom, which are 11.1 at the 5% level, and 15.1 at the 1% level. Clearly,

in both cases, the joint null hypothesis that all of the first five autocorre-

lation coefficients are zero cannot be rejected. Note that, in this instance,

the individual test caused a rejection while the joint test did not. This is an

unexpected result that may have arisen as a result of the low power of the

joint test when four of the five individual autocorrelation coefficients are

insignificant. Thus the effect of the significant autocorrelation coefficient

is diluted in the joint test by the insignificant coefficients. The sample size

used in this example is also modest relative to those commonly available

in finance.

5.3 Moving average processes

The simplest class of time series model that one could entertain is that

of the moving average process. Let ut (t = 1, 2, 3, . . . ) be a white noise

process with E(ut ) = 0 and var(ut ) = σ 2. Then

yt = μ + ut + θ1ut−1 + θ2ut−2 + · · · + θqut−q (5.14)

is a qth order moving average mode, denoted MA(q). This can be expressed

using sigma notation as

yt = μ +
q

∑

i=1

θi ut−i + ut (5.15)

A moving average model is simply a linear combination of white noise

processes, so that yt depends on the current and previous values of a white

noise disturbance term. Equation (5.15) will later have to be manipulated,

and such a process is most easily achieved by introducing the lag operator

notation. This would be written Lyt = yt−1 to denote that yt is lagged once.

In order to show that the ith lag of yt is being taken (that is, the value

that yt took i periods ago), the notation would be L i yt = yt−i . Note that in
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some books and studies, the lag operator is referred to as the ‘backshift

operator’, denoted by B. Using the lag operator notation, (5.15) would be

written as

yt = μ +
q

∑

i=1

θi L i ut + ut (5.16)

or as

yt = μ + θ (L)ut (5.17)

where: θ (L) = 1 + θ1L + θ2L2 + · · · + θq Lq .

In much of what follows, the constant (μ) is dropped from the equations.

Removing μ considerably eases the complexity of algebra involved, and is

inconsequential for it can be achieved without loss of generality. To see

this, consider a sample of observations on a series, zt that has a mean z̄. A

zero-mean series, yt can be constructed by simply subtracting z̄ from each

observation zt .

The distinguishing properties of the moving average process of order q

given above are

(1) E(yt ) = μ (5.18)

(2) var(yt ) = γ0 =
(

1 + θ2
1 + θ2

2 + · · · + θ2
q

)

σ 2 (5.19)

(3) covariances γs

=

{

(θs + θs+1θ1 + θs+2θ2 + · · · + θqθq−s) σ 2 for s = 1, 2, . . . , q

0 for s > q
(5.20)

So, a moving average process has constant mean, constant variance, and

autocovariances which may be non-zero to lag q and will always be zero

thereafter. Each of these results will be derived below.

Example 5.2

Consider the following MA(2) process

yt = ut + θ1ut−1 + θ2ut−2 (5.21)

where ut is a zero mean white noise process with variance σ 2.

(1) Calculate the mean and variance of yt

(2) Derive the autocorrelation function for this process (i.e. express the

autocorrelations, τ1, τ2, . . . as functions of the parameters θ1 and θ2)

(3) If θ1 = −0.5 and θ2 = 0.25, sketch the acf of yt .
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Solution

(1) If E(ut ) = 0, then E(ut−i ) = 0 ∀ i (5.22)

So the expected value of the error term is zero for all time periods.

Taking expectations of both sides of (5.21) gives

E(yt ) = E(ut + θ1ut−1 + θ2ut−2)

= E(ut ) + θ1E(ut−1) + θ2E(ut−2) = 0 (5.23)

var(yt ) = E[yt − E(yt )][yt − E(yt )] (5.24)

but E(yt ) = 0, so that the last component in each set of square brackets

in (5.24) is zero and this reduces to

var(yt ) = E[(yt )(yt )] (5.25)

Replacing yt in (5.25) with the RHS of (5.21)

var(yt ) = E[(ut + θ1ut−1 + θ2ut−2)(ut + θ1ut−1 + θ2ut−2)] (5.26)

var(yt ) = E
[

u2
t + θ2

1 u2
t−1 + θ2

2 u2
t−2 + cross-products

]

(5.27)

But E[cross-products] = 0 since cov(ut , ut−s) = 0 for s �= 0. ‘Cross-products’

is thus a catchall expression for all of the terms in u which have

different time subscripts, such as ut−1ut−2 or ut−5ut−20, etc. Again, one

does not need to worry about these cross-product terms, since these

are effectively the autocovariances of ut , which will all be zero by

definition since ut is a random error process, which will have zero

autocovariances (except at lag zero). So

var(yt ) = γ0 = E
[

u2
t + θ2

1 u2
t−1 + θ2

2 u2
t−2

]

(5.28)

var(yt ) = γ0 = σ 2 + θ2
1 σ 2 + θ2

2 σ 2 (5.29)

var(yt ) = γ0 =
(

1 + θ2
1 + θ2

2

)

σ 2 (5.30)

γ0 can also be interpreted as the autocovariance at lag zero.

(2) Calculating now the acf of yt , first determine the autocovariances

and then the autocorrelations by dividing the autocovariances by the

variance.

The autocovariance at lag 1 is given by

γ1 = E[yt − E(yt )][yt−1 − E(yt−1)] (5.31)

γ1 = E[yt ][yt−1] (5.32)

γ1 = E[(ut + θ1ut−1 + θ2ut−2)(ut−1 + θ1ut−2 + θ2ut−3)] (5.33)



214 Introductory Econometrics for Finance

Again, ignoring the cross-products, (5.33) can be written as

γ1 = E
[(

θ1u2
t−1 + θ1θ2u2

t−2

)]

(5.34)

γ1 = θ1σ
2 + θ1θ2σ

2 (5.35)

γ1 = (θ1 + θ1θ2)σ 2 (5.36)

The autocovariance at lag 2 is given by

γ2 = E[yt − E(yt )][yt−2 − E(yt−2)] (5.37)

γ2 = E[yt ][yt−2] (5.38)

γ2 = E[(ut + θ1ut−1 + θ2ut−2)(ut−2 + θ1ut−3 + θ2ut−4)] (5.39)

γ2 = E
[(

θ2u2
t−2

)]

(5.40)

γ2 = θ2σ
2 (5.41)

The autocovariance at lag 3 is given by

γ3 = E[yt − E(yt )][yt−3 − E(yt−3)] (5.42)

γ3 = E[yt ][yt−3] (5.43)

γ3 = E[(ut + θ1ut−1 + θ2ut−2)(ut−3 + θ1ut−4 + θ2ut−5)] (5.44)

γ3 = 0 (5.45)

So γs = 0 for s 2. All autocovariances for the MA(2) process will be zero

for any lag length, s, greater than 2.

The autocorrelation at lag 0 is given by

τ0 =
γ0

γ0

= 1 (5.46)

The autocorrelation at lag 1 is given by

τ1 =
γ1

γ0

=
(θ1 + θ1θ2)σ 2

(

1 + θ2
1 + θ2

2

)

σ 2
=

(θ1 + θ1θ2)
(

1 + θ2
1 + θ2

2

) (5.47)

The autocorrelation at lag 2 is given by

τ2 =
γ2

γ0

=
(θ2)σ 2

(

1 + θ2
1 + θ2

2

)

σ 2
=

θ2
(

1 + θ2
1 + θ2

2

) (5.48)

The autocorrelation at lag 3 is given by

τ3 =
γ3

γ0

= 0 (5.49)

The autocorrelation at lag s is given by

τs =
γs

γ0

= 0 ∀ s > 2 (5.50)
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Figure 5.1 Autocorrelation function for sample MA(2) process

(3) For θ1 = −0.5 and θ2 = 0.25, substituting these into the formulae

above gives the first two autocorrelation coefficients as τ1 = −0.476,

τ2 = 0.190. Autocorrelation coefficients for lags greater than 2 will

all be zero for an MA(2) model. Thus the acf plot will appear as in

figure 5.1.

5.4 Autoregressive processes

An autoregressive model is one where the current value of a variable, y,

depends upon only the values that the variable took in previous periods

plus an error term. An autoregressive model of order p, denoted as AR(p),

can be expressed as

yt = μ + φ1 yt−1 + φ2 yt−2 + · · · + φp yt−p + ut (5.51)

where ut is a white noise disturbance term. A manipulation of expression

(5.51) will be required to demonstrate the properties of an autoregres-

sive model. This expression can be written more compactly using sigma

notation

yt = μ +
p

∑

i=1

φi yt−i + ut (5.52)
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or using the lag operator, as

yt = μ +
p

∑

i=1

φi L i yt + ut (5.53)

or

φ(L)yt = μ + ut (5.54)

where φ(L) = (1 − φ1L − φ2L2 − · · · − φp L p).

5.4.1 The stationarity condition

Stationarity is a desirable property of an estimated AR model, for several

reasons. One important reason is that a model whose coefficients are non-

stationary will exhibit the unfortunate property that previous values of

the error term will have a non-declining effect on the current value of

yt as time progresses. This is arguably counter-intuitive and empirically

implausible in many cases. More discussion on this issue will be presented

in chapter 7. Box 5.1 defines the stationarity condition algebraically.

Box 5.1 The stationarity condition for an AR(p) model

Setting μ to zero in (5.54), for a zero mean AR (p) process, yt , given by

φ(L)yt = ut (5.55)

it would be stated that the process is stationary if it is possible to write

yt = φ(L)−1ut (5.56)

with φ(L)−1 converging to zero. This means that the autocorrelations will decline

eventually as the lag length is increased. When the expansion φ(L)−1 is calculated, it

will contain an infinite number of terms, and can be written as an MA(∞), e.g.

a1ut−1 + a2ut−2 + a3ut−3 + · · · + ut . If the process given by (5.54) is stationary, the

coefficients in the MA(∞) representation will decline eventually with lag length. On

the other hand, if the process is non-stationary, the coefficients in the MA(∞)

representation would not converge to zero as the lag length increases.

The condition for testing for the stationarity of a general AR(p) model is that the

roots of the ‘characteristic equation’

1 − φ1z − φ2z2 − · · · − φpz p = 0 (5.57)

all lie outside the unit circle. The notion of a characteristic equation is so-called

because its roots determine the characteristics of the process yt – for example, the

acf for an AR process will depend on the roots of this characteristic equation, which is

a polynomial in z.
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Example 5.3

Is the following model stationary?

yt = yt−1 + ut (5.58)

In order to test this, first write yt−1 in lag operator notation (i.e. as Lyt ),

and take this term over to the LHS of (5.58), and factorise

yt = Lyt + ut (5.59)

yt − Lyt = ut (5.60)

yt (1 − L) = ut (5.61)

Then the characteristic equation is

1 − z = 0, (5.62)

having the root z = 1, which lies on, not outside, the unit circle. In fact,

the particular AR(p) model given by (5.58) is a non-stationary process

known as a random walk (see chapter 7).

This procedure can also be adopted for autoregressive models with

longer lag lengths and where the stationarity or otherwise of the process

is less obvious. For example, is the following process for yt stationary?

yt = 3yt−1 − 2.75yt−2 + 0.75yt−3 + ut (5.63)

Again, the first stage is to express this equation using the lag operator

notation, and then taking all the terms in y over to the LHS

yt = 3Lyt − 2.75L2 yt + 0.75L3 yt + ut (5.64)

(1 − 3L + 2.75L2 − 0.75L3)yt = ut (5.65)

The characteristic equation is

1 − 3z + 2.75z2 − 0.75z3 = 0 (5.66)

which fortunately factorises to

(1 − z)(1 − 1.5z)(1 − 0.5z) = 0 (5.67)

so that the roots are z = 1, z = 2/3, and z = 2. Only one of these lies

outside the unit circle and hence the process for yt described by (5.63) is

not stationary.

5.4.2 Wold’s decomposition theorem

Wold’s decomposition theorem states that any stationary series can be de-

composed into the sum of two unrelated processes, a purely deterministic
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part and a purely stochastic part, which will be an MA(∞). A simpler

way of stating this in the context of AR modelling is that any stationary

autoregressive process of order p with no constant and no other terms

can be expressed as an infinite order moving average model. This result is

important for deriving the autocorrelation function for an autoregressive

process.

For the AR(p) model, given in, for example, (5.51) (with μ set to zero for

simplicity) and expressed using the lag polynomial notation, φ(L)yt = ut ,

the Wold decomposition is

yt = ψ(L)ut (5.68)

where ψ(L) = φ(L)−1 = (1 − φ1L − φ2L2 − · · · − φp L p)−1

The characteristics of an autoregressive process are as follows. The (un-

conditional) mean of y is given by

E(yt ) =
μ

1 − φ1 − φ2 − · · · − φp

(5.69)

The autocovariances and autocorrelation functions can be obtained by

solving a set of simultaneous equations known as the Yule--Walker equa-

tions. The Yule--Walker equations express the correlogram (the τs) as a

function of the autoregressive coefficients (the φs)

τ1 = φ1 + τ1φ2 + · · · + τp−1φp

τ2 = τ1φ1 + φ2 + · · · + τp−2φp

...
...

... (5.70)

τp = τp−1φ1 + τp−2φ2 + · · · + φp

For any AR model that is stationary, the autocorrelation function will

decay geometrically to zero.1 These characteristics of an autoregressive

process will be derived from first principles below using an illustrative

example.

Example 5.4

Consider the following simple AR(1) model

yt = μ + φ1 yt−1 + ut (5.71)

(i) Calculate the (unconditional) mean yt .

For the remainder of the question, set the constant to zero (μ = 0)

for simplicity.

1 Note that the τs will not follow an exact geometric sequence, but rather the absolute

value of the τs is bounded by a geometric series. This means that the autocorrelation

function does not have to be monotonically decreasing and may change sign.
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(ii) Calculate the (unconditional) variance of yt .

(iii) Derive the autocorrelation function for this process.

Solution

(i) The unconditional mean will be given by the expected value of ex-

pression (5.71)

E(yt ) = E(μ + φ1 yt−1) (5.72)

E(yt ) = μ + φ1E(yt−1) (5.73)

But also

yt−1 = μ + φ1 yt−2 + ut−1 (5.74)

So, replacing yt−1 in (5.73) with the RHS of (5.74)

E(yt ) = μ + φ1(μ + φ1E(yt−2)) (5.75)

E(yt ) = μ + φ1μ + φ2
1E(yt−2) (5.76)

Lagging (5.74) by a further one period

yt−2 = μ + φ1 yt−3 + ut−2 (5.77)

Repeating the steps given above one more time

E(yt ) = μ + φ1μ + φ2
1(μ + φ1E(yt−3)) (5.78)

E(yt ) = μ + φ1μ + φ2
1μ + φ3

1E(yt−3) (5.79)

Hopefully, readers will by now be able to see a pattern emerging.

Making n such substitutions would give

E(yt ) = μ
(

1 + φ1 + φ2
1 + · · · + φn−1

1

)

+ φt
1E(yt−n) (5.80)

So long as the model is stationary, i.e. |φ1| < 1, then φ∞
1 = 0. Therefore,

taking limits as n → ∞, then limn→∞φt
1E(yt−n) = 0, and so

E(yt ) = μ
(

1 + φ1 + φ2
1 + · · ·

)

(5.81)

Recall the rule of algebra that the finite sum of an infinite number

of geometrically declining terms in a series is given by ‘first term in

series divided by (1 minus common difference)’, where the common

difference is the quantity that each term in the series is multiplied

by to arrive at the next term. It can thus be stated from (5.81) that

E(yt ) =
μ

1 − φ1

(5.82)
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Thus the expected or mean value of an autoregressive process of order

one is given by the intercept parameter divided by one minus the

autoregressive coefficient.

(ii) Calculating now the variance of yt , with μ set to zero

yt = φ1 yt−1 + ut (5.83)

This can be written equivalently as

yt (1 − φ1L) = ut (5.84)

From Wold’s decomposition theorem, the AR(p) can be expressed as

an MA(∞)

yt = (1 − φ1L)−1ut (5.85)

yt =
(

1 + φ1L + φ2
1 L2 + · · ·

)

ut (5.86)

or

yt = ut + φ1ut−1 + φ2
1ut−2 + φ3

1ut−3 + · · · (5.87)

So long as |φ1| < 1, i.e. so long as the process for yt is stationary, this

sum will converge.

From the definition of the variance of any random variable y, it is

possible to write

var(yt ) = E[yt − E(yt )][yt − E(yt )] (5.88)

but E(yt ) = 0, since μ is set to zero to obtain (5.83) above. Thus

var(yt ) = E[(yt )(yt )] (5.89)

var(yt ) = E
[(

ut + φ1ut−1 + φ2
1ut−2 + · · ·

)(

ut + φ1ut−1 + φ2
1ut−2 + · · ·

)]

(5.90)

var(yt ) = E
[

u2
t + φ2

1u2
t−1 + φ4

1u2
t−2 + · · · + cross-products

]

(5.91)

As discussed above, the ‘cross-products’ can be set to zero.

var(yt ) = γ0 = E
[

u2
t + φ2

1u2
t−1 + φ4

1u2
t−2 + · · ·

]

(5.92)

var(yt ) = σ 2 + φ2
1σ

2 + φ4
1σ

2 + · · · (5.93)

var(yt ) = σ 2
(

1 + φ2
1 + φ4

1 + · · ·
)

(5.94)

Provided that |φ1| < 1, the infinite sum in (5.94) can be written as

var(yt ) =
σ 2

(

1 − φ2
1

) (5.95)

(iii) Turning now to the calculation of the autocorrelation function, the

autocovariances must first be calculated. This is achieved by following
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similar algebraic manipulations as for the variance above, starting

with the definition of the autocovariances for a random variable. The

autocovariances for lags 1, 2, 3, . . . , s, will be denoted by γ1, γ2, γ3, . . . ,

γs , as previously.

γ1 = cov (yt , yt−1) = E[yt − E(yt )][yt−1 − E(yt−1)] (5.96)

Since μ has been set to zero, E(yt ) = 0 and E(yt−1) = 0, so

γ1 = E[yt yt−1] (5.97)

under the result above that E(yt ) = E(yt−1) = 0. Thus

γ1 = E
[(

ut + φ1ut−1 + φ2
1ut−2 + · · ·

)(

ut−1 + φ1ut−2

+ φ2
1ut−3 + · · ·

)]

(5.98)

γ1 = E
[

φ1u2
t−1 + φ3

1u2
t−2 + · · · + cross − products

]

(5.99)

Again, the cross-products can be ignored so that

γ1 = φ1σ
2 + φ3

1σ
2 + φ5

1σ
2 + · · · (5.100)

γ1 = φ1σ
2
(

1 + φ2
1 + φ4

1 + · · ·
)

(5.101)

γ1 =
φ1σ

2

(

1 − φ2
1

) (5.102)

For the second autocovariance,

γ2 = cov(yt , yt−2) = E[yt − E(yt )][yt−2 − E(yt−2)] (5.103)

Using the same rules as applied above for the lag 1 covariance

γ2 = E[yt yt−2] (5.104)

γ2 = E
[(

ut + φ1ut−1 + φ2
1ut−2 + · · ·

)(

ut−2 + φ1ut−3

+ φ2
1ut−4 + · · ·

)]

(5.105)

γ2 = E
[

φ2
1u2

t−2 + φ4
1u2

t−3 + · · · + cross-products
]

(5.106)

γ2 = φ2
1σ

2 + φ4
1σ

2 + · · · (5.107)

γ2 = φ2
1σ

2
(

1 + φ2
1 + φ4

1 + · · ·
)

(5.108)

γ2 =
φ2

1σ
2

(

1 − φ2
1

) (5.109)

By now it should be possible to see a pattern emerging. If these steps

were repeated for γ3, the following expression would be obtained

γ3 =
φ3

1σ
2

(

1 − φ2
1

) (5.110)
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and for any lag s, the autocovariance would be given by

γs =
φs

1σ
2

(

1 − φ2
1

) (5.111)

The acf can now be obtained by dividing the covariances by the vari-

ance, so that

τ0 =
γ0

γ0

= 1 (5.112)

τ1 =
γ1

γ0

=

(

φ1σ
2

(

1 − φ2
1

)

)

(

σ 2

(

1 − φ2
1

)

) = φ1 (5.113)

τ2 =
γ2

γ0

=

(

φ2
1σ

2

(

1 − φ2
1

)

)

(

σ 2

(

1 − φ2
1

)

) = φ2
1 (5.114)

τ3 = φ3
1 (5.115)

The autocorrelation at lag s is given by

τs = φs
1 (5.116)

which means that corr(yt , yt−s) = φs
1. Note that use of the Yule--Walker

equations would have given the same answer.

5.5 The partial autocorrelation function

The partial autocorrelation function, or pacf (denoted τkk), measures the

correlation between an observation k periods ago and the current ob-

servation, after controlling for observations at intermediate lags (i.e. all

lags < k) -- i.e. the correlation between yt and yt−k , after removing the ef-

fects of yt−k+1, yt−k+2, . . . , yt−1. For example, the pacf for lag 3 would mea-

sure the correlation between yt and yt−3 after controlling for the effects

of yt−1 and yt−2.

At lag 1, the autocorrelation and partial autocorrelation coefficients

are equal, since there are no intermediate lag effects to eliminate. Thus,

τ11 = τ1, where τ1 is the autocorrelation coefficient at lag 1.

At lag 2

τ22 =
(

τ2 − τ 2
1

)/(

1 − τ 2
1

)

(5.117)
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where τ1 and τ2 are the autocorrelation coefficients at lags 1 and 2, re-

spectively. For lags greater than two, the formulae are more complex and

hence a presentation of these is beyond the scope of this book. There now

proceeds, however, an intuitive explanation of the characteristic shape of

the pacf for a moving average and for an autoregressive process.

In the case of an autoregressive process of order p, there will be direct

connections between yt and yt−s for s ≤ p, but no direct connections for

s > p. For example, consider the following AR(3) model

yt = φ0 + φ1 yt−1 + φ2 yt−2 + φ3 yt−3 + ut (5.118)

There is a direct connection through the model between yt and yt−1, and

between yt and yt−2, and between yt and yt−3, but not between yt and yt−s ,

for s > 3. Hence the pacf will usually have non-zero partial autocorrelation

coefficients for lags up to the order of the model, but will have zero partial

autocorrelation coefficients thereafter. In the case of the AR(3), only the

first three partial autocorrelation coefficients will be non-zero.

What shape would the partial autocorrelation function take for a mov-

ing average process? One would need to think about the MA model as

being transformed into an AR in order to consider whether yt and yt−k ,

k = 1, 2, . . . , are directly connected. In fact, so long as the MA(q) pro-

cess is invertible, it can be expressed as an AR(∞). Thus a definition of

invertibility is now required.

5.5.1 The invertibility condition

An MA(q) model is typically required to have roots of the characteristic

equation θ (z) = 0 greater than one in absolute value. The invertibility

condition is mathematically the same as the stationarity condition, but

is different in the sense that the former refers to MA rather than AR

processes. This condition prevents the model from exploding under an

AR(∞) representation, so that θ−1(L) converges to zero. Box 5.2 shows the

invertibility condition for an MA(2) model.

5.6 ARMA processes

By combining the AR(p) and MA(q) models, an ARMA(p, q) model is

obtained. Such a model states that the current value of some series y

depends linearly on its own previous values plus a combination of cur-

rent and previous values of a white noise error term. The model could be
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Box 5.2 The invertibility condition for an MA(2) model

In order to examine the shape of the pacf for moving average processes, consider the

following MA(2) process for yt

yt = ut + θ1ut−1 + θ2ut−2 = θ (L)ut (5.119)

Provided that this process is invertible, this MA(2) can be expressed as an AR(∞)

yt =
∞

∑

i=1

ci L i yt−i + ut (5.120)

yt = c1 yt−1 + c2 yt−2 + c3 yt−3 + · · · + ut (5.121)

It is now evident when expressed in this way that for a moving average model, there are

direct connections between the current value of y and all of its previous values. Thus,

the partial autocorrelation function for an MA(q) model will decline geometrically, rather

than dropping off to zero after q lags, as is the case for its autocorrelation function. It

could thus be stated that the acf for an AR has the same basic shape as the pacf for

an MA, and the acf for an MA has the same shape as the pacf for an AR.

written

φ(L)yt = μ + θ (L)ut (5.122)

where

φ(L) = 1 − φ1L − φ2L2 − · · · − φp L p and

θ (L) = 1 + θ1L + θ2L2 + · · · + θq Lq

or

yt = μ + φ1 yt−1 + φ2 yt−2 + · · · + φp yt−p + θ1ut−1

+ θ2ut−2 + · · · + θqut−q + ut (5.123)

with

E(ut ) = 0; E
(

u2
t

)

= σ 2; E(ut us) = 0, t �= s

The characteristics of an ARMA process will be a combination of those

from the autoregressive (AR) and moving average (MA) parts. Note that

the pacf is particularly useful in this context. The acf alone can distin-

guish between a pure autoregressive and a pure moving average process.

However, an ARMA process will have a geometrically declining acf, as will

a pure AR process. So, the pacf is useful for distinguishing between an

AR(p) process and an ARMA(p, q) process -- the former will have a geomet-

rically declining autocorrelation function, but a partial autocorrelation

function which cuts off to zero after p lags, while the latter will have
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both autocorrelation and partial autocorrelation functions which decline

geometrically.

We can now summarise the defining characteristics of AR, MA and

ARMA processes.

An autoregressive process has:

● a geometrically decaying acf

● a number of non-zero points of pacf = AR order.

A moving average process has:

● number of non-zero points of acf = MA order

● a geometrically decaying pacf.

A combination autoregressive moving average process has:

● a geometrically decaying acf

● a geometrically decaying pacf.

In fact, the mean of an ARMA series is given by

E(yt ) =
μ

1 − φ1 − φ2 − · · · − φp

(5.124)

The autocorrelation function will display combinations of behaviour de-

rived from the AR and MA parts, but for lags beyond q, the acf will simply

be identical to the individual AR(p) model, so that the AR part will dom-

inate in the long term. Deriving the acf and pacf for an ARMA process

requires no new algebra, but is tedious and hence is left as an exercise

for interested readers.

5.6.1 Sample acf and pacf plots for standard processes

Figures 5.2--5.8 give some examples of typical processes from the ARMA

family with their characteristic autocorrelation and partial autocorrela-

tion functions. The acf and pacf are not produced analytically from the

relevant formulae for a model of that type, but rather are estimated using

100,000 simulated observations with disturbances drawn from a normal

distribution. Each figure also has 5% (two-sided) rejection bands repre-

sented by dotted lines. These are based on (±1.96/
√

100000) = ±0.0062,

calculated in the same way as given above. Notice how, in each case, the

acf and pacf are identical for the first lag.

In figure 5.2, the MA(1) has an acf that is significant for only lag 1,

while the pacf declines geometrically, and is significant until lag 7. The

acf at lag 1 and all of the pacfs are negative as a result of the negative

coefficient in the MA generating process.
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Figure 5.2 Sample autocorrelation and partial autocorrelation functions for an MA(1) model:

yt = −0.5ut−1 + ut
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Figure 5.3 Sample autocorrelation and partial autocorrelation functions for an MA(2) model:

yt = 0.5ut−1 − 0.25ut−2 + ut
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Figure 5.4 Sample autocorrelation and partial autocorrelation functions for a slowly decaying AR(1)

model: yt = 0.9yt−1 + ut
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Figure 5.5 Sample autocorrelation and partial autocorrelation functions for a more rapidly decaying

AR(1) model: yt = 0.5yt−1 + ut
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Figure 5.6 Sample autocorrelation and partial autocorrelation functions for a more rapidly decaying

AR(1) model with negative coefficient: yt = −0.5yt−1 + ut
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Figure 5.7 Sample autocorrelation and partial autocorrelation functions for a non-stationary model

(i.e. a unit coefficient): yt = yt−1 + ut
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Figure 5.8 Sample autocorrelation and partial autocorrelation functions for an ARMA(1, 1) model:

yt = 0.5yt−1 + 0.5ut−1 + ut

Again, the structures of the acf and pacf in figure 5.3 are as anticipated.

The first two autocorrelation coefficients only are significant, while the

partial autocorrelation coefficients are geometrically declining. Note also

that, since the second coefficient on the lagged error term in the MA

is negative, the acf and pacf alternate between positive and negative. In

the case of the pacf, we term this alternating and declining function a

‘damped sine wave’ or ‘damped sinusoid’.

For the autoregressive model of order 1 with a fairly high coefficient --

i.e. relatively close to 1 -- the autocorrelation function would be expected

to die away relatively slowly, and this is exactly what is observed here in

figure 5.4. Again, as expected for an AR(1), only the first pacf coefficient

is significant, while all others are virtually zero and are not significant.

Figure 5.5 plots an AR(1), which was generated using identical error

terms, but a much smaller autoregressive coefficient. In this case, the

autocorrelation function dies away much more quickly than in the previ-

ous example, and in fact becomes insignificant after around 5 lags.

Figure 5.6 shows the acf and pacf for an identical AR(1) process to that

used for figure 5.5, except that the autoregressive coefficient is now nega-

tive. This results in a damped sinusoidal pattern for the acf, which again
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becomes insignificant after around lag 5. Recalling that the autocorre-

lation coefficient for this AR(1) at lag s is equal to (−0.5)s , this will be

positive for even s, and negative for odd s. Only the first pacf coefficient

is significant (and negative).

Figure 5.7 plots the acf and pacf for a non-stationary series (see

chapter 7 for an extensive discussion) that has a unit coefficient on the

lagged dependent variable. The result is that shocks to y never die away,

and persist indefinitely in the system. Consequently, the acf function re-

mains relatively flat at unity, even up to lag 10. In fact, even by lag 10,

the autocorrelation coefficient has fallen only to 0.9989. Note also that on

some occasions, the acf does die away, rather than looking like figure 5.7,

even for such a non-stationary process, owing to its inherent instability

combined with finite computer precision. The pacf, however, is significant

only for lag 1, correctly suggesting that an autoregressive model with no

moving average term is most appropriate.

Finally, figure 5.8 plots the acf and pacf for a mixed ARMA process.

As one would expect of such a process, both the acf and the pacf decline

geometrically -- the acf as a result of the AR part and the pacf as a result of

the MA part. The coefficients on the AR and MA are, however, sufficiently

small that both acf and pacf coefficients have become insignificant by

lag 6.

5.7 Building ARMA models: the Box–Jenkins approach

Although the existence of ARMA models predates them, Box and Jenkins

(1976) were the first to approach the task of estimating an ARMA model in

a systematic manner. Their approach was a practical and pragmatic one,

involving three steps:

(1) Identification

(2) Estimation

(3) Diagnostic checking.

These steps are now explained in greater detail.

Step 1

This involves determining the order of the model required to capture the dy-

namic features of the data. Graphical procedures are used (plotting the

data over time and plotting the acf and pacf) to determine the most ap-

propriate specification.
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Step 2

This involves estimation of the parameters of the model specified in step 1. This

can be done using least squares or another technique, known as maximum

likelihood, depending on the model.

Step 3

This involves model checking -- i.e. determining whether the model spec-

ified and estimated is adequate. Box and Jenkins suggest two methods:

overfitting and residual diagnostics. Overfitting involves deliberately fitting

a larger model than that required to capture the dynamics of the data

as identified in stage 1. If the model specified at step 1 is adequate, any

extra terms added to the ARMA model would be insignificant. Residual di-

agnostics imply checking the residuals for evidence of linear dependence

which, if present, would suggest that the model originally specified was

inadequate to capture the features of the data. The acf, pacf or Ljung--Box

tests could be used.

It is worth noting that ‘diagnostic testing’ in the Box--Jenkins world es-

sentially involves only autocorrelation tests rather than the whole barrage

of tests outlined in chapter 4. Also, such approaches to determining the ad-

equacy of the model could only reveal a model that is underparameterised

(‘too small’) and would not reveal a model that is overparameterised (‘too

big’).

Examining whether the residuals are free from autocorrelation is much

more commonly used than overfitting, and this may partly have arisen

since for ARMA models, it can give rise to common factors in the overfit-

ted model that make estimation of this model difficult and the statistical

tests ill behaved. For example, if the true model is an ARMA(1,1) and we de-

liberately then fit an ARMA(2,2) there will be a common factor so that not

all of the parameters in the latter model can be identified. This problem

does not arise with pure AR or MA models, only with mixed processes.

It is usually the objective to form a parsimonious model, which is one that

describes all of the features of data of interest using as few parameters

(i.e. as simple a model) as possible. A parsimonious model is desirable

because:

● The residual sum of squares is inversely proportional to the number of

degrees of freedom. A model which contains irrelevant lags of the

variable or of the error term (and therefore unnecessary parameters)

will usually lead to increased coefficient standard errors, implying that

it will be more difficult to find significant relationships in the data.

Whether an increase in the number of variables (i.e. a reduction in
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the number of degrees of freedom) will actually cause the estimated

parameter standard errors to rise or fall will obviously depend on how

much the RSS falls, and on the relative sizes of T and k. If T is very

large relative to k, then the decrease in RSS is likely to outweigh the

reduction in T − k so that the standard errors fall. Hence ‘large’ models

with many parameters are more often chosen when the sample size is

large.

● Models that are profligate might be inclined to fit to data specific fea-

tures, which would not be replicated out-of-sample. This means that the

models may appear to fit the data very well, with perhaps a high value

of R2, but would give very inaccurate forecasts. Another interpretation

of this concept, borrowed from physics, is that of the distinction be-

tween ‘signal’ and ‘noise’. The idea is to fit a model which captures the

signal (the important features of the data, or the underlying trends or

patterns), but which does not try to fit a spurious model to the noise

(the completely random aspect of the series).

5.7.1 Information criteria for ARMA model selection

The identification stage would now typically not be done using graphi-

cal plots of the acf and pacf. The reason is that when ‘messy’ real data is

used, it unfortunately rarely exhibits the simple patterns of figures 5.2--5.8.

This makes the acf and pacf very hard to interpret, and thus it is diffi-

cult to specify a model for the data. Another technique, which removes

some of the subjectivity involved in interpreting the acf and pacf, is to

use what are known as information criteria. Information criteria embody

two factors: a term which is a function of the residual sum of squares

(RSS), and some penalty for the loss of degrees of freedom from adding

extra parameters. So, adding a new variable or an additional lag to a

model will have two competing effects on the information criteria: the

residual sum of squares will fall but the value of the penalty term will

increase.

The object is to choose the number of parameters which minimises the

value of the information criteria. So, adding an extra term will reduce

the value of the criteria only if the fall in the residual sum of squares

is sufficient to more than outweigh the increased value of the penalty

term. There are several different criteria, which vary according to how

stiff the penalty term is. The three most popular information criteria

are Akaike’s (1974) information criterion (AIC), Schwarz’s (1978) Bayesian

information criterion (SBIC), and the Hannan--Quinn criterion (HQIC).
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Algebraically, these are expressed, respectively, as

AIC = ln(σ̂ 2) +
2k

T
(5.125)

SBIC = ln(σ̂ 2) +
k

T
ln T (5.126)

HQIC = ln(σ̂ 2) +
2k

T
ln(ln(T )) (5.127)

where σ̂ 2 is the residual variance (also equivalent to the residual sum

of squares divided by the number of observations, T ), k = p + q + 1 is

the total number of parameters estimated and T is the sample size. The

information criteria are actually minimised subject to p ≤ p̄, q ≤ q̄, i.e.

an upper limit is specified on the number of moving average (q̄) and/or

autoregressive ( p̄) terms that will be considered.

It is worth noting that SBIC embodies a much stiffer penalty term than

AIC, while HQIC is somewhere in between. The adjusted R2 measure can

also be viewed as an information criterion, although it is a very soft one,

which would typically select the largest models of all.

5.7.2 Which criterion should be preferred if they suggest different model orders?

SBIC is strongly consistent (but inefficient) and AIC is not consistent, but is

generally more efficient. In other words, SBIC will asymptotically deliver

the correct model order, while AIC will deliver on average too large a

model, even with an infinite amount of data. On the other hand, the

average variation in selected model orders from different samples within

a given population will be greater in the context of SBIC than AIC. Overall,

then, no criterion is definitely superior to others.

5.7.3 ARIMA modelling

ARIMA modelling, as distinct from ARMA modelling, has the additional

letter ‘I’ in the acronym, standing for ‘integrated’. An integrated au-

toregressive process is one whose characteristic equation has a root on

the unit circle. Typically researchers difference the variable as neces-

sary and then build an ARMA model on those differenced variables. An

ARMA(p, q) model in the variable differenced d times is equivalent to an

ARIMA(p, d, q) model on the original data -- see chapter 7 for further de-

tails. For the remainder of this chapter, it is assumed that the data used in

model construction are stationary, or have been suitably transformed to

make them stationary. Thus only ARMA models will be considered further.



234 Introductory Econometrics for Finance

5.8 Constructing ARMA models in EViews

5.8.1 Getting started

This example uses the monthly UK house price series which was already

incorporated in an EViews workfile in chapter 1. There were a total of

196 monthly observations running from February 1991 (recall that the

January observation was ‘lost’ in constructing the lagged value) to May

2007 for the percentage change in house price series.

The objective of this exercise is to build an ARMA model for the house

price changes. Recall that there are three stages involved: identification, es-

timation and diagnostic checking. The first stage is carried out by looking

at the autocorrelation and partial autocorrelation coefficients to identify

any structure in the data.

5.8.2 Estimating the autocorrelation coefficients for up to 12 lags

Double click on the DHP series and then click View and choose Correlo-

gram . . . . In the ‘Correlogram Specification’ window, choose Level (since

the series we are investigating has already been transformed into percent-

age returns or percentage changes) and in the ‘Lags to include’ box, type

12. Click on OK. The output, including relevant test statistics, is given in

screenshot 5.1.

It is clearly evident from the first columns that the series is quite persis-

tent given that it is already in percentage change form. The autocorrela-

tion function dies away quite slowly. Only the first partial autocorrelation

coefficient appears strongly significant. The numerical values of the auto-

correlation and partial autocorrelation coefficients at lags 1--12 are given

in the fourth and fifth columns of the output, with the lag length given

in the third column.

The penultimate column of output gives the statistic resulting from a

Ljung--Box test with number of lags in the sum equal to the row number

(i.e. the number in the third column). The test statistics will follow a χ2(1)

for the first row, a χ2(2) for the second row, and so on. p-values associated

with these test statistics are given in the last column.

Remember that as a rule of thumb, a given autocorrelation coefficient

is classed as significant if it is outside a ±1.96 × 1/(T )1/2 band, where T

is the number of observations. In this case, it would imply that a cor-

relation coefficient is classed as significant if it is bigger than approx-

imately 0.14 or smaller than −0.14. The band is of course wider when

the sampling frequency is monthly, as it is here, rather than daily where

there would be more observations. It can be deduced that the first three
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Screenshot 5.1

Estimating the

correlogram

autocorrelation coefficients and the first two partial autocorrelation co-

efficients are significant under this rule. Since the first acf coefficient is

highly significant, the Ljung--Box joint test statistic rejects the null hy-

pothesis of no autocorrelation at the 1% level for all numbers of lags

considered. It could be concluded that a mixed ARMA process could be

appropriate, although it is hard to precisely determine the appropriate

order given these results. In order to investigate this issue further, the

information criteria are now employed.

5.8.3 Using information criteria to decide on model orders

As demonstrated above, deciding on the appropriate model orders from

autocorrelation functions could be very difficult in practice. An easier way

is to choose the model order that minimises the value of an information

criterion.

An important point to note is that books and statistical packages often

differ in their construction of the test statistic. For example, the formu-

lae given earlier in this chapter for Akaike’s and Schwarz’s Information
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Criteria were

AIC = ln(σ̂ 2) +
2k

T
(5.128)

SBIC = ln(σ̂ 2) +
k

T
(ln T ) (5.129)

where σ̂ 2 is the estimator of the variance of regressions disturbances ut , k

is the number of parameters and T is the sample size. When using the

criterion based on the estimated standard errors, the model with the

lowest value of AIC and SBIC should be chosen. However, EViews uses a

formulation of the test statistic derived from the log-likelihood function

value based on a maximum likelihood estimation (see chapter 8). The

corresponding EViews formulae are

AICℓ = −2ℓ/T +
2k

T
(5.130)

SBICℓ = −2ℓ/T +
k

T
(ln T ) (5.131)

where l = −
T

2
(1 + ln(2π ) + ln(û′û/T ))

Unfortunately, this modification is not benign, since it affects the rela-

tive strength of the penalty term compared with the error variance, some-

times leading different packages to select different model orders for the

same data and criterion!

Suppose that it is thought that ARMA models from order (0,0) to (5,5)

are plausible for the house price changes. This would entail considering

36 models (ARMA(0,0), ARMA(1,0), ARMA(2,0), . . . ARMA(5,5)), i.e. up to five

lags in both the autoregressive and moving average terms.

In EViews, this can be done by separately estimating each of the models

and noting down the value of the information criteria in each case.2 This

would be done in the following way. On the EViews main menu, click

on Quick and choose Estimate Equation . . . . EViews will open an Equa-

tion Specification window. In the Equation Specification editor, type, for

example

dhp c ar(1) ma(1)

For the estimation settings, select LS – Least Squares (NLS and ARMA),

select the whole sample, and click OK -- this will specify an ARMA(1,1).

The output is given in the table below.

2 Alternatively, any reader who knows how to write programs in EViews could set up a

structure to loop over the model orders and calculate all the values of the information

criteria together -- see chapter 12.
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Dependent Variable: DHP

Method: Least Squares

Date: 08/31/07 Time: 16:09

Sample (adjusted): 1991M03 2007M05

Included observations: 195 after adjustments

Convergence achieved after 19 iterations

MA Backcast: 1991M02

Coefficient Std. Error t-Statistic Prob.

C 0.868177 0.334573 2.594884 0.0102

AR(1) 0.975461 0.019471 50.09854 0.0000

MA(1) −0.909851 0.039596 −22.9784 0.0000

R-squared 0.144695 Mean dependent var 0.635212

Adjusted R-squared 0.135786 S.D. dependent var 1.149146

S.E. of regression 1.068282 Akaike info criterion 2.985245

Sum squared resid 219.1154 Schwarz criterion 3.035599

Log likelihood −288.0614 Hannan-Quinn criter. 3.005633

F-statistic 16.24067 Durbin-Watson stat 1.842823

Prob(F-statistic) 0.000000

Inverted AR Roots .98

Inverted MA Roots .91

In theory, the output would then be interpreted in a similar way to

that discussed in chapter 3. However, in reality it is very difficult to in-

terpret the parameter estimates in the sense of, for example, saying, ‘a

1 unit increase in x leads to a β unit increase in y’. In part because the

construction of ARMA models is not based on any economic or financial

theory, it is often best not to even try to interpret the individual param-

eter estimates, but rather to examine the plausibility of the model as a

whole and to determine whether it describes the data well and produces

accurate forecasts (if this is the objective of the exercise, which it often is).

The inverses of the AR and MA roots of the characteristic equation are

also shown. These can be used to check whether the process implied by the

model is stationary and invertible. For the AR and MA parts of the process

to be stationary and invertible, respectively, the inverted roots in each case

must be smaller than 1 in absolute value, which they are in this case,

although only just. Note also that the header for the EViews output for

ARMA models states the number of iterations that have been used in the

model estimation process. This shows that, in fact, an iterative numerical

optimisation procedure has been employed to estimate the coefficients

(see chapter 8 for further details).
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Repeating these steps for the other ARMA models would give all of

the required values for the information criteria. To give just one more

example, in the case of an ARMA(5,5), the following would be typed in the

Equation Specification editor box:

dhp c ar(1) ar(2) ar(3) ar(4) ar(5) ma(1) ma(2) ma(3) ma(4) ma(5)

Note that, in order to estimate an ARMA(5,5) model, it is necessary to

write out the whole list of terms as above rather than to simply write, for

example, ‘dhp c ar(5) ma(5)’, which would give a model with a fifth lag

of the dependent variable and a fifth lag of the error term but no other

variables. The values of all of the information criteria, calculated using

EViews, are as follows:

Information criteria for ARMA models of the

percentage changes in UK house prices

AIC

p/q 0 1 2 3 4 5

0 3.116 3.086 2.973 2.973 2.977 2.977

1 3.065 2.985 2.965 2.935 2.931 2.938

2 2.951 2.961 2.968 2.924 2.941 2.957

3 2.960 2.968 2.970 2.980 2.937 2.914

4 2.969 2.979 2.931 2.940 2.862 2.924

5 2.984 2.932 2.955 2.986 2.937 2.936

SBIC

p/q 0 1 2 3 4 5

0 3.133 3.120 3.023 3.040 3.061 3.078

1 3.098 3.036 3.032 3.019 3.032 3.056

2 3.002 3.029 3.053 3.025 3.059 3.091

3 3.028 3.053 3.072 3.098 3.072 3.066

4 3.054 3.081 3.049 3.076 3.015 3.094

5 3.086 3.052 3.092 3.049 3.108 3.123

So which model actually minimises the two information criteria? In this

case, the criteria choose different models: AIC selects an ARMA(4,4), while

SBIC selects the smaller ARMA(2,0) model -- i.e. an AR(2). These chosen

models are highlighted in bold in the table. It will always be the case

that SBIC selects a model that is at least as small (i.e. with fewer or the

same number of parameters) as AIC, because the former criterion has a

stricter penalty term. This means that SBIC penalises the incorporation

of additional terms more heavily. Many different models provide almost
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identical values of the information criteria, suggesting that the chosen

models do not provide particularly sharp characterisations of the data and

that a number of other specifications would fit the data almost as well.

5.9 Examples of time series modelling in finance

5.9.1 Covered and uncovered interest parity

The determination of the price of one currency in terms of another (i.e. the

exchange rate) has received a great deal of empirical examination in the

international finance literature. Of these, three hypotheses in particular

are studied -- covered interest parity (CIP), uncovered interest parity (UIP)

and purchasing power parity (PPP). The first two of these will be consid-

ered as illustrative examples in this chapter, while PPP will be discussed in

chapter 7. All three relations are relevant for students of finance, for vio-

lation of one or more of the parities may offer the potential for arbitrage,

or at least will offer further insights into how financial markets operate.

All are discussed briefly here; for a more comprehensive treatment, see

Cuthbertson and Nitsche (2004) or the many references therein.

5.9.2 Covered interest parity

Stated in its simplest terms, CIP implies that, if financial markets are

efficient, it should not be possible to make a riskless profit by borrowing

at a risk-free rate of interest in a domestic currency, switching the funds

borrowed into another (foreign) currency, investing them there at a risk-

free rate and locking in a forward sale to guarantee the rate of exchange

back to the domestic currency. Thus, if CIP holds, it is possible to write

ft − st = (r − r∗)t (5.132)

where ft and st are the log of the forward and spot prices of the domestic

in terms of the foreign currency at time t , r is the domestic interest rate

and r∗ is the foreign interest rate. This is an equilibrium condition which

must hold otherwise there would exist riskless arbitrage opportunities,

and the existence of such arbitrage would ensure that any deviation from

the condition cannot hold indefinitely. It is worth noting that, underlying

CIP are the assumptions that the risk-free rates are truly risk-free -- that

is, there is no possibility for default risk. It is also assumed that there are

no transactions costs, such as broker’s fees, bid--ask spreads, stamp duty,

etc., and that there are no capital controls, so that funds can be moved

without restriction from one currency to another.
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5.9.3 Uncovered interest parity

UIP takes CIP and adds to it a further condition known as ‘forward rate

unbiasedness’ (FRU). Forward rate unbiasedness states that the forward

rate of foreign exchange should be an unbiased predictor of the future

value of the spot rate. If this condition does not hold, again in theory

riskless arbitrage opportunities could exist. UIP, in essence, states that

the expected change in the exchange rate should be equal to the interest

rate differential between that available risk-free in each of the currencies.

Algebraically, this may be stated as

se
t+1 − st = (r − r∗)t (5.133)

where the notation is as above and se
t+1 is the expectation, made at time

t of the spot exchange rate that will prevail at time t + 1.

The literature testing CIP and UIP is huge with literally hundreds of

published papers. Tests of CIP unsurprisingly (for it is a pure arbitrage con-

dition) tend not to reject the hypothesis that the condition holds. Taylor

(1987, 1989) has conducted extensive examinations of CIP, and concluded

that there were historical periods when arbitrage was profitable, particu-

larly during periods where the exchange rates were under management.

Relatively simple tests of UIP and FRU take equations of the form (5.133)

and add intuitively relevant additional terms. If UIP holds, these addi-

tional terms should be insignificant. Ito (1988) tests UIP for the yen/dollar

exchange rate with the three-month forward rate for January 1973 until

February 1985. The sample period is split into three as a consequence

of perceived structural breaks in the series. Strict controls on capital

movements were in force in Japan until 1977, when some were relaxed

and finally removed in 1980. A Chow test confirms Ito’s intuition and

suggests that the three sample periods should be analysed separately.

Two separate regressions are estimated for each of the three sample

sub-periods

st+3 − ft,3 = a + b1(st − ft−3,3) + b2(st−1 − ft−4,3) + ut (5.134)

where st+3 is the spot interest rate prevailing at time t + 3, ft,3 is the for-

ward rate for three periods ahead available at time t , and so on, and ut

is an error term. A natural joint hypothesis to test is H0: a = 0 and b1 =0

and b2 = 0. This hypothesis represents the restriction that the deviation

of the forward rate from the realised rate should have a mean value in-

significantly different from zero (a = 0) and it should be independent of

any information available at time t (b1 = 0 and b2 = 0). All three of these

conditions must be fulfilled for UIP to hold. The second equation that Ito
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Table 5.1 Uncovered interest parity test results

Sample period 1973M1--1977M3 1977M4--1980M12 1981M1--1985M2

Panel A: Estimates and hypothesis tests for

St+3 − ft,3 = a + b1(st − ft−3,3) + b2(st−1 − ft−4,3) + ut

Estimate of a 0.0099 0.0031 0.027

Estimate of b1 0.020 0.24 0.077

Estimate of b2 −0.37 0.16 −0.21

Joint test χ2(3) 23.388 5.248 6.022

P -value for joint test 0.000 0.155 0.111

Panel B: Estimates and hypothesis tests for

St+3 − ft,3 = a + b(st − ft,3) + vt

Estimate of a 0.00 −0.052 −0.89

Estimate of b 0.095 4.18 2.93

Joint test χ2(2) 31.923 22.06 5.39

p-value for joint test 0.000 0.000 0.07

Source: Ito (1988). Reprinted with permission from MIT Press Journals.

tests is

st+3 − ft,3 = a + b(st − ft,3) + vt (5.135)

where vt is an error term and the hypothesis of interest in this case is H0:

a = 0 and b = 0.

Equation (5.134) tests whether past forecast errors have information use-

ful for predicting the difference between the actual exchange rate at time

t + 3, and the value of it that was predicted by the forward rate. Equation

(5.135) tests whether the forward premium has any predictive power for

the difference between the actual exchange rate at time t + 3, and the

value of it that was predicted by the forward rate. The results for the

three sample periods are presented in Ito’s table 3, and are adapted and

reported here in table 5.1.

The main conclusion is that UIP clearly failed to hold throughout the

period of strictest controls, but there is less and less evidence against UIP

as controls were relaxed.

5.10 Exponential smoothing

Exponential smoothing is another modelling technique (not based on the

ARIMA approach) that uses only a linear combination of the previous

values of a series for modelling it and for generating forecasts of its future
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values. Given that only previous values of the series of interest are used,

the only question remaining is how much weight should be attached to

each of the previous observations. Recent observations would be expected

to have the most power in helping to forecast future values of a series. If

this is accepted, a model that places more weight on recent observations

than those further in the past would be desirable. On the other hand,

observations a long way in the past may still contain some information

useful for forecasting future values of a series, which would not be the

case under a centred moving average. An exponential smoothing model

will achieve this, by imposing a geometrically declining weighting scheme

on the lagged values of a series. The equation for the model is

St = αyt + (1 − α)St−1 (5.136)

where α is the smoothing constant, with 0 < α < 1, yt is the current re-

alised value, St is the current smoothed value.

Since α + (1 − α) = 1, St is modelled as a weighted average of the current

observation yt and the previous smoothed value. The model above can be

rewritten to express the exponential weighting scheme more clearly. By

lagging (5.136) by one period, the following expression is obtained

St−1 = αyt−1 + (1 − α)St−2 (5.137)

and lagging again

St−2 = αyt−2 + (1 − α)St−3 (5.138)

Substituting into (5.136) for St−1 from (5.137)

St = αyt + (1 − α)(αyt−1 + (1 − α)St−2) (5.139)

St = αyt + (1 − α)αyt−1 + (1 − α)2St−2 (5.140)

Substituting into (5.140) for St−2 from (5.138)

St = αyt + (1 − α)αyt−1 + (1 − α)2(αyt−2 + (1 − α)St−3) (5.141)

St = αyt + (1 − α)αyt−1 + (1 − α)2αyt−2 + (1 − α)3St−3 (5.142)

T successive substitutions of this kind would lead to

St =

(

T
∑

i=0

α(1 − α)i yt−i

)

+ (1 − α)T +1St−1−T (5.143)

Since α 0, the effect of each observation declines geometrically as the

variable moves another observation forward in time. In the limit as T →
∞, (1−α)T S0 → 0, so that the current smoothed value is a geometrically

weighted infinite sum of the previous realisations.
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The forecasts from an exponential smoothing model are simply set to

the current smoothed value, for any number of steps ahead, s

ft,s = St , s = 1, 2, 3, . . . (5.144)

The exponential smoothing model can be seen as a special case of a Box--

Jenkins model, an ARIMA(0,1,1), with MA coefficient (1 − α) -- see Granger

and Newbold (1986, p. 174).

The technique above is known as single or simple exponential smooth-

ing, and it can be modified to allow for trends (Holt’s method) or to allow

for seasonality (Winter’s method) in the underlying variable. These aug-

mented models are not pursued further in this text since there is a much

better way to model the trends (using a unit root process -- see chapter 7)

and the seasonalities (see chapters 1 and 9) of the form that are typically

present in financial data.

Exponential smoothing has several advantages over the slightly more

complex ARMA class of models discussed above. First, exponential smooth-

ing is obviously very simple to use. There is no decision to be made on how

many parameters to estimate (assuming only single exponential smooth-

ing is considered). Thus it is easy to update the model if a new realisation

becomes available.

Among the disadvantages of exponential smoothing is the fact that it

is overly simplistic and inflexible. Exponential smoothing models can be

viewed as but one model from the ARIMA family, which may not necessar-

ily be optimal for capturing any linear dependence in the data. Also, the

forecasts from an exponential smoothing model do not converge on the

long-term mean of the variable as the horizon increases. The upshot is

that long-term forecasts are overly affected by recent events in the history

of the series under investigation and will therefore be sub-optimal.

A discussion of how exponential smoothing models can be estimated

using EViews will be given after the following section on forecasting in

econometrics.

5.11 Forecasting in econometrics

Although the words ‘forecasting’ and ‘prediction’ are sometimes given

different meanings in some studies, in this text the words will be used

synonymously. In this context, prediction or forecasting simply means an

attempt to determine the values that a series is likely to take. Of course, forecasts

might also usefully be made in a cross-sectional environment. Although

the discussion below refers to time series data, some of the arguments

will carry over to the cross-sectional context.
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Determining the forecasting accuracy of a model is an important test of

its adequacy. Some econometricians would go as far as to suggest that the

statistical adequacy of a model in terms of whether it violates the CLRM

assumptions or whether it contains insignificant parameters, is largely

irrelevant if the model produces accurate forecasts. The following sub-

sections of the book discuss why forecasts are made, how they are made

from several important classes of models, how to evaluate the forecasts,

and so on.

5.11.1 Why forecast?

Forecasts are made essentially because they are useful! Financial decisions

often involve a long-term commitment of resources, the returns to which

will depend upon what happens in the future. In this context, the deci-

sions made today will reflect forecasts of the future state of the world,

and the more accurate those forecasts are, the more utility (or money!) is

likely to be gained from acting on them.

Some examples in finance of where forecasts from econometric models

might be useful include:

● Forecasting tomorrow’s return on a particular share

● Forecasting the price of a house given its characteristics

● Forecasting the riskiness of a portfolio over the next year

● Forecasting the volatility of bond returns

● Forecasting the correlation between US and UK stock market movements

tomorrow

● Forecasting the likely number of defaults on a portfolio of home loans.

Again, it is evident that forecasting can apply either in a cross-sectional or

a time series context. It is useful to distinguish between two approaches

to forecasting:

● Econometric (structural) forecasting -- relates a dependent variable to one or

more independent variables. Such models often work well in the long

run, since a long-run relationship between variables often arises from

no-arbitrage or market efficiency conditions. Examples of such forecasts

would include return predictions derived from arbitrage pricing mod-

els, or long-term exchange rate prediction based on purchasing power

parity or uncovered interest parity theory.

● Time series forecasting -- involves trying to forecast the future values of a

series given its previous values and/or previous values of an error term.

The distinction between the two types is somewhat blurred -- for example,

it is not clear where vector autoregressive models (see chapter 6 for an

extensive overview) fit into this classification.
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In-sample estimation period
Out-of-sample forecast

evaluation period

Jan 1990 Dec 1998 Jan 1999 Dec 1999

Figure 5.9 Use of an in-sample and an out-of-sample period for analysis

It is also worth distinguishing between point and interval forecasts.

Point forecasts predict a single value for the variable of interest, while

interval forecasts provide a range of values in which the future value of

the variable is expected to lie with a given level of confidence.

5.11.2 The difference between in-sample and out-of-sample forecasts

In-sample forecasts are those generated for the same set of data that was

used to estimate the model’s parameters. One would expect the ‘forecasts’

of a model to be relatively good in-sample, for this reason. Therefore, a

sensible approach to model evaluation through an examination of forecast

accuracy is not to use all of the observations in estimating the model

parameters, but rather to hold some observations back. The latter sample,

sometimes known as a holdout sample, would be used to construct out-of-

sample forecasts.

To give an illustration of this distinction, suppose that some monthly

FTSE returns for 120 months (January 1990--December 1999) are available.

It would be possible to use all of them to build the model (and generate

only in-sample forecasts), or some observations could be kept back, as

shown in figure 5.9.

What would be done in this case would be to use data from 1990M1 until

1998M12 to estimate the model parameters, and then the observations for

1999 would be forecasted from the estimated parameters. Of course, where

each of the in-sample and out-of-sample periods should start and finish

is somewhat arbitrary and at the discretion of the researcher. One could

then compare how close the forecasts for the 1999 months were relative to

their actual values that are in the holdout sample. This procedure would

represent a better test of the model than an examination of the in-sample

fit of the model since the information from 1999M1 onwards has not been

used when estimating the model parameters.

5.11.3 Some more terminology: one-step-ahead versus multi-step-ahead

forecasts and rolling versus recursive samples

A one-step-ahead forecast is a forecast generated for the next observation only,

whereas multi-step-ahead forecasts are those generated for 1, 2, 3, . . . , s steps
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ahead, so that the forecasting horizon is for the next s periods. Whether

one-step- or multi-step-ahead forecasts are of interest will be determined

by the forecasting horizon of interest to the researcher.

Suppose that the monthly FTSE data are used as described in the ex-

ample above. If the in-sample estimation period stops in December 1998,

then up to 12-step-ahead forecasts could be produced, giving 12 predictions

that can be compared with the actual values of the series. Comparing the

actual and forecast values in this way is not ideal, for the forecasting hori-

zon is varying from 1 to 12 steps ahead. It might be the case, for example,

that the model produces very good forecasts for short horizons (say, one

or two steps), but that it produces inaccurate forecasts further ahead. It

would not be possible to evaluate whether this was in fact the case or not

since only a single one-step-ahead forecast, a single 2-step-ahead forecast,

and so on, are available. An evaluation of the forecasts would require a

considerably larger holdout sample.

A useful way around this problem is to use a recursive or rolling window,

which generates a series of forecasts for a given number of steps ahead.

A recursive forecasting model would be one where the initial estimation

date is fixed, but additional observations are added one at a time to the

estimation period. A rolling window, on the other hand, is one where the

length of the in-sample period used to estimate the model is fixed, so

that the start date and end date successively increase by one observation.

Suppose now that only one-, two-, and three-step-ahead forecasts are of

interest. They could be produced using the following recursive and rolling

window approaches:

Objective: to produce Data used to estimate model parameters

1-, 2-, 3-step-ahead forecasts for: Rolling window Recursive window

1999M1, M2, M3 1990M1--1998M12 1990M1--1998M12

1999M2, M3, M4 1990M2--1999M1 1990M1--1999M1

1999M3, M4, M5 1990M3--1999M2 1990M1--1999M2

1999M4, M5, M6 1990M4--1999M3 1990M1--1999M3

1999M5, M6, M7 1990M5--1999M4 1990M1--1999M4

1999M6, M7, M8 1990M6--1999M5 1990M1--1999M5

1999M7, M8, M9 1990M7--1999M6 1990M1--1999M6

1999M8, M9, M10 1990M8--1999M7 1990M1--1999M7

1999M9, M10, M11 1990M9--1999M8 1990M1--1999M8

1999M10, M11, M12 1990M10--1999M9 1990M1--1999M9

The sample length for the rolling windows above is always set at 108

observations, while the number of observations used to estimate the
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parameters in the recursive case increases as we move down the table

and through the sample.

5.11.4 Forecasting with time series versus structural models

To understand how to construct forecasts, the idea of conditional expecta-

tions is required. A conditional expectation would be expressed as

E(yt+1 | t )

This expression states that the expected value of y is taken for time t + 1,

conditional upon, or given, (|) all information available up to and includ-

ing time t (t ). Contrast this with the unconditional expectation of y,

which is the expected value of y without any reference to time, i.e. the

unconditional mean of y. The conditional expectations operator is used

to generate forecasts of the series.

How this conditional expectation is evaluated will of course depend on

the model under consideration. Several families of models for forecasting

will be developed in this and subsequent chapters.

A first point to note is that by definition the optimal forecast for a zero

mean white noise process is zero

E(ut+s |t ) = 0 ∀ s > 0 (5.145)

The two simplest forecasting ‘methods’ that can be employed in almost

every situation are shown in box 5.3.

Box 5.3 Naive forecasting methods

(1) Assume no change so that the forecast, f , of the value of y, s steps into the future

is the current value of y

E(yt+s |t ) = yt (5.146)

Such a forecast would be optimal if yt followed a random walk process.

(2) In the absence of a full model, forecasts can be generated using the long-term

average of the series. Forecasts using the unconditional mean would be more useful

than ‘no change’ forecasts for any series that is ‘mean-reverting’ (i.e. stationary).

Time series models are generally better suited to the production of time

series forecasts than structural models. For an illustration of this, consider

the following linear regression model

yt = β1 + β2x2t + β3x3t + · · · + βk xkt + ut (5.147)
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To forecast y, the conditional expectation of its future value is required.

Taking expectations of both sides of (5.147) yields

E(yt |t−1 ) = E(β1 + β2x2t + β3x3t + · · · + βk xkt + ut ) (5.148)

The parameters can be taken through the expectations operator, since

this is a population regression function and therefore they are assumed

known. The following expression would be obtained

E(yt |t−1 ) = β1 + β2E(x2t ) + β3E(x3t ) + · · · + βkE(xkt ) (5.149)

But there is a problem: what are E(x2t ), etc.? Remembering that informa-

tion is available only until time t − 1, the values of these variables are

unknown. It may be possible to forecast them, but this would require

another set of forecasting models for every explanatory variable. To the

extent that forecasting the explanatory variables may be as difficult, or

even more difficult, than forecasting the explained variable, this equation

has achieved nothing! In the absence of a set of forecasts for the explana-

tory variables, one might think of using x̄2, etc., i.e. the mean values of

the explanatory variables, giving

E(yt ) = β1 + β2 x̄2 + β3 x̄3 + · · · + βk x̄k = ȳ ! (5.150)

Thus, if the mean values of the explanatory variables are used as inputs

to the model, all that will be obtained as a forecast is the average value of

y. Forecasting using pure time series models is relatively common, since

it avoids this problem.

5.11.5 Forecasting with ARMA models

Forecasting using ARMA models is a fairly simple exercise in calculating

conditional expectations. Although any consistent and logical notation

could be used, the following conventions will be adopted in this book. Let

ft,s denote a forecast made using an ARMA(p,q) model at time t for s steps

into the future for some series y. The forecasts are generated by what is

known as a forecast function, typically of the form

ft,s =
p

∑

i=1

ai ft,s−i +
q

∑

j=1

b j ut+s− j (5.151)

where ft,s = yt+s, s ≤ 0; ut+s = 0, s > 0

= ut+s, s ≤ 0

and ai and bi are the autoregressive and moving average coefficients,

respectively.
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A demonstration of how one generates forecasts for separate AR and

MA processes, leading to the general equation (5.151) above, will now be

given.

5.11.6 Forecasting the future value of an MA(q) process

A moving average process has a memory only of length q, and this lim-

its the sensible forecasting horizon. For example, suppose that an MA(3)

model has been estimated

yt = μ + θ1ut−1 + θ2ut−2 + θ3ut−3 + ut (5.152)

Since parameter constancy over time is assumed, if this relationship holds

for the series y at time t , it is also assumed to hold for y at time t + 1, t +
2, . . . , so 1 can be added to each of the time subscripts in (5.152), and 2

added to each of the time subscripts, and then 3, and so on, to arrive at

the following

yt+1 = μ + θ1ut + θ2ut−1 + θ3ut−2 + ut+1 (5.153)

yt+2 = μ + θ1ut+1 + θ2ut + θ3ut−1 + ut+2 (5.154)

yt+3 = μ + θ1ut+2 + θ2ut+1 + θ3ut + ut+3 (5.155)

Suppose that all information up to and including that at time t is available

and that forecasts for 1, 2, . . . , s steps ahead -- i.e. forecasts for y at times

t + 1, t + 2, . . . , t + s are wanted. yt , yt−1, . . . , and ut , ut−1, are known, so

producing the forecasts is just a matter of taking the conditional expec-

tation of (5.153)

ft,1 = E(yt+1|t ) = E(μ + θ1ut + θ2ut−1 + θ3ut−2 + ut+1|t ) (5.156)

where E(yt+1|t ) is a short-hand notation for E(yt+1|t )

ft,1 = E(yt+1|t ) = μ + θ1ut + θ2ut−1 + θ3ut−2 (5.157)

Thus the forecast for y, 1 step ahead, made at time t , is given by this

linear combination of the disturbance terms. Note that it would not be

appropriate to set the values of these disturbance terms to their uncon-

ditional mean of zero. This arises because it is the conditional expectation

of their values that is of interest. Given that all information is known up

to and including that at time t is available, the values of the error terms

up to time t are known. But ut+1 is not known at time t and therefore

E(ut+1|t ) = 0, and so on.
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The forecast for 2 steps ahead is formed by taking the conditional ex-

pectation of (5.154)

ft,2 = E(yt+2|t ) = E(μ + θ1ut+1 + θ2ut + θ3ut−1 + ut+2 | t ) (5.158)

ft,2 = E(yt+2|t ) = μ + θ2ut + θ3ut−1 (5.159)

In the case above, ut+2 is not known since information is available only to

time t , so E(ut+2) is set to zero. Continuing and applying the same rules

to generate 3-, 4-, . . . , s-step-ahead forecasts

ft,3 = E(yt+3|t ) = E(μ + θ1ut+2 + θ2ut+1 + θ3ut + ut+3 | t ) (5.160)

ft,3 = E(yt+3|t ) = μ + θ3ut (5.161)

ft,4 = E(yt+4|t ) = μ (5.162)

ft,s = E(yt+s|t ) = μ ∀ s ≥ 4 (5.163)

As the MA(3) process has a memory of only three periods, all forecasts four

or more steps ahead collapse to the intercept. Obviously, if there had been

no constant term in the model, the forecasts four or more steps ahead for

an MA(3) would be zero.

5.11.7 Forecasting the future value of an AR(p) process

Unlike a moving average process, an autoregressive process has infinite

memory. To illustrate, suppose that an AR(2) model has been estimated

yt = μ + φ1 yt−1 + φ2 yt−2 + ut (5.164)

Again, by appealing to the assumption of parameter stability, this equation

will hold for times t + 1, t + 2, and so on

yt+1 = μ + φ1 yt + φ2 yt−1 + ut+1 (5.165)

yt+2 = μ + φ1 yt+1 + φ2 yt + ut+2 (5.166)

yt+3 = μ + φ1 yt+2 + φ2 yt+1 + ut+3 (5.167)

Producing the one-step-ahead forecast is easy, since all of the information

required is known at time t . Applying the expectations operator to (5.165),

and setting E(ut+1) to zero would lead to

ft,1 = E(yt+1|t ) = E(μ + φ1 yt + φ2 yt−1 + ut+1 | t ) (5.168)

ft,1 = E(yt+1|t ) = μ + φ1 E(yt | t) + φ2 E(yt−1 | t) (5.169)

ft,1 = E(yt+1|t ) = μ + φ1 yt + φ2 yt−1 (5.170)



Univariate time series modelling and forecasting 251

Applying the same procedure in order to generate a two-step-ahead fore-

cast

ft,2 = E(yt+2|t ) = E(μ + φ1 yt+1 + φ2 yt + ut+2 | t ) (5.171)

ft,2 = E(yt+2|t ) = μ + φ1 E(yt+1 | t) + φ2 E(yt | t) (5.172)

The case above is now slightly more tricky, since E(yt+1) is not known,

although this in fact is the one-step-ahead forecast, so that (5.172)

becomes

ft,2 = E(yt+2|t ) = μ + φ1 ft,1 + φ2 yt (5.173)

Similarly, for three, four, . . . and s steps ahead, the forecasts will be, re-

spectively, given by

ft,3 = E(yt+3|t ) = E(μ + φ1 yt+2 + φ2 yt+1 + ut+3 | t ) (5.174)

ft,3 = E(yt+3|t ) = μ + φ1 E(yt+2 | t) + φ2 E(yt+1 | t) (5.175)

ft,3 = E(yt+3|t ) = μ + φ1 ft,2 + φ2 ft,1 (5.176)

ft,4 = μ + φ1 ft,3 + φ2 ft,2 (5.177)

etc. so

ft,s = μ + φ1 ft,s−1 + φ2 ft,s−2 (5.178)

Thus the s-step-ahead forecast for an AR(2) process is given by the inter-

cept + the coefficient on the one-period lag multiplied by the time s − 1

forecast + the coefficient on the two-period lag multiplied by the s − 2

forecast.

ARMA(p,q) forecasts can easily be generated in the same way by applying

the rules for their component parts, and using the general formula given

by (5.151).

5.11.8 Determining whether a forecast is accurate or not

For example, suppose that tomorrow’s return on the FTSE is predicted to

be 0.2, and that the outcome is actually −0.4. Is this an accurate forecast?

Clearly, one cannot determine whether a forecasting model is good or

not based upon only one forecast and one realisation. Thus in practice,

forecasts would usually be produced for the whole of the out-of-sample

period, which would then be compared with the actual values, and the

difference between them aggregated in some way. The forecast error for

observation i is defined as the difference between the actual value for

observation i and the forecast made for it. The forecast error, defined

in this way, will be positive (negative) if the forecast was too low (high).

Therefore, it is not possible simply to sum the forecast errors, since the
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Table 5.2 Forecast error aggregation

Steps ahead Forecast Actual Squared error Absolute error

1 0.20 −0.40 (0.20 − −0.40)2 = 0.360 |0.20 − −0.40| = 0.600

2 0.15 0.20 (0.15−0.20)2 = 0.002 |0.15−0.20| = 0.050

3 0.10 0.10 (0.10−0.10)2 = 0.000 |0.10−0.10| = 0.000

4 0.06 −0.10 (0.06 − −0.10)2 = 0.026 |0.06 − −0.10| = 0.160

5 0.04 −0.05 (0.04 − −0.05)2 = 0.008 |0.04 − −0.05| = 0.090

positive and negative errors will cancel one another out. Thus, before the

forecast errors are aggregated, they are usually squared or the absolute

value taken, which renders them all positive. To see how the aggregation

works, consider the example in table 5.2, where forecasts are made for

a series up to 5 steps ahead, and are then compared with the actual

realisations (with all calculations rounded to 3 decimal places).

The mean squared error, MSE, and mean absolute error, MAE, are now

calculated by taking the average of the fourth and fifth columns, respec-

tively

MSE = (0.360 + 0.002 + 0.000 + 0.026 + 0.008)/5 = 0.079 (5.179)

MAE = (0.600 + 0.050 + 0.000 + 0.160 + 0.090)/5 = 0.180 (5.180)

Taken individually, little can be gleaned from considering the size of the

MSE or MAE, for the statistic is unbounded from above (like the residual

sum of squares or RSS). Instead, the MSE or MAE from one model would

be compared with those of other models for the same data and forecast

period, and the model(s) with the lowest value of the error measure would

be argued to be the most accurate.

MSE provides a quadratic loss function, and so may be particularly use-

ful in situations where large forecast errors are disproportionately more

serious than smaller errors. This may, however, also be viewed as a disad-

vantage if large errors are not disproportionately more serious, although

the same critique could also, of course, be applied to the whole least

squares methodology. Indeed Dielman (1986) goes as far as to say that

when there are outliers present, least absolute values should be used to

determine model parameters rather than least squares. Makridakis (1993,

p. 528) argues that mean absolute percentage error (MAPE) is ‘a relative

measure that incorporates the best characteristics among the various ac-

curacy criteria’. Once again, denoting s-step-ahead forecasts of a variable

made at time t as ft,s and the actual value of the variable at time t as yt ,
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then the mean square error can be defined as

MSE =
1

T − (T1 − 1)

T
∑

t=T1

(yt+s − ft,s)2 (5.181)

where T is the total sample size (in-sample + out-of-sample), and T1 is the

first out-of-sample forecast observation. Thus in-sample model estimation

initially runs from observation 1 to (T1−1), and observations T1 to T are

available for out-of-sample estimation, i.e. a total holdout sample of T −
(T1 − 1).

Mean absolute error (MAE) measures the average absolute forecast error,

and is given by

MAE =
1

T − (T1 − 1)

T
∑

t=T1

|yt+s − ft,s | (5.182)

Adjusted MAPE (AMAPE) or symmetric MAPE corrects for the problem of

asymmetry between the actual and forecast values

AMAPE =
100

T − (T1 − 1)

T
∑

t=T1

∣

∣

∣

∣

yt+s − ft,s

yt+s + ft,s

∣

∣

∣

∣

(5.183)

The symmetry in (5.183) arises since the forecast error is divided by twice

the average of the actual and forecast values. So, for example, AMAPE will

be the same whether the forecast is 0.5 and the actual value is 0.3, or

the actual value is 0.5 and the forecast is 0.3. The same is not true of the

standard MAPE formula, where the denominator is simply yt+s , so that

whether yt or ft,s is larger will affect the result

MAPE =
100

T − (T1 − 1)

T
∑

t=T1

∣

∣

∣

∣

yt+s − ft,s

yt+s

∣

∣

∣

∣

(5.184)

MAPE also has the attractive additional property compared to MSE that

it can be interpreted as a percentage error, and furthermore, its value is

bounded from below by 0.

Unfortunately, it is not possible to use the adjustment if the series and

the forecasts can take on opposite signs (as they could in the context of

returns forecasts, for example). This is due to the fact that the prediction

and the actual value may, purely by coincidence, take on values that are

almost equal and opposite, thus almost cancelling each other out in the

denominator. This leads to extremely large and erratic values of AMAPE.

In such an instance, it is not possible to use MAPE as a criterion either.

Consider the following example: say we forecast a value of ft,s = 3, but

the out-turn is that yt+s = 0.0001. The addition to total MSE from this one
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observation is given by

1

391
× (0.0001 − 3)2 = 0.0230 (5.185)

This value for the forecast is large, but perfectly feasible since in many

cases it will be well within the range of the data. But the addition to total

MAPE from just this single observation is given by

100

391

∣

∣

∣

∣

0.0001 − 3

0.0001

∣

∣

∣

∣

= 7670 (5.186)

MAPE has the advantage that for a random walk in the log levels (i.e. a

zero forecast), the criterion will take the value one (or 100 if we multiply

the formula by 100 to get a percentage, as was the case for the equation

above. So if a forecasting model gives a MAPE smaller than one (or 100),

it is superior to the random walk model. In fact the criterion is also not

reliable if the series can take on absolute values less than one. This point

may seem somewhat obvious, but it is clearly important for the choice of

forecast evaluation criteria.

Another criterion which is popular is Theil’s U -statistic (1966). The met-

ric is defined as follows

U =

√

T
∑

t=T1

(

yt+s − ft,s

yt+s

)2

√

T
∑

t=T1

(

yt+s − f bt,s

yt+s

)2
(5.187)

where f bt,s is the forecast obtained from a benchmark model (typically

a simple model such as a naive or random walk). A U -statistic of one

implies that the model under consideration and the benchmark model

are equally (in)accurate, while a value of less than one implies that the

model is superior to the benchmark, and vice versa for U > 1. Although

the measure is clearly useful, as Makridakis and Hibon (1995) argue, it is

not without problems since if fbt,s is the same as yt+s , Uwill be infinite

since the denominator will be zero. The value of U will also be influenced

by outliers in a similar vein to MSE and has little intuitive meaning.3

5.11.9 Statistical versus financial or economic loss functions

Many econometric forecasting studies evaluate the models’ success using

statistical loss functions such as those described above. However, it is not

3 Note that the Theil’s U -formula reported by EViews is slightly different.
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necessarily the case that models classed as accurate because they have

small mean squared forecast errors are useful in practical situations. To

give one specific illustration, it has recently been shown (Gerlow, Irwin and

Liu, 1993) that the accuracy of forecasts according to traditional statistical

criteria may give little guide to the potential profitability of employing

those forecasts in a market trading strategy. So models that perform poorly

on statistical grounds may still yield a profit if used for trading, and vice

versa.

On the other hand, models that can accurately forecast the sign of

future returns, or can predict turning points in a series have been found

to be more profitable (Leitch and Tanner, 1991). Two possible indicators

of the ability of a model to predict direction changes irrespective of their

magnitude are those suggested by Pesaran and Timmerman (1992) and

by Refenes (1995). The relevant formulae to compute these measures are,

respectively

% correct sign predictions =
1

T − (T1 − 1)

T
∑

t=T1

zt+s (5.188)

where zt+s = 1 if (yt+s ft,s) > 0

zt+s = 0 otherwise

and

% correct direction change predictions =
1

T − (T1 − 1)

T
∑

t=T1

zt+s (5.189)

where zt+s = 1 if (yt+s − yt )( ft,s − yt ) > 0

zt+s = 0 otherwise

Thus, in each case, the criteria give the proportion of correctly predicted

signs and directional changes for some given lead time s, respectively.

Considering how strongly each of the three criteria outlined above (MSE,

MAE and proportion of correct sign predictions) penalises large errors

relative to small ones, the criteria can be ordered as follows:

Penalises large errors least → penalises large errors most heavily

Sign prediction → MAE →MSE

MSE penalises large errors disproportionately more heavily than small er-

rors, MAE penalises large errors proportionately equally as heavily as small

errors, while the sign prediction criterion does not penalise large errors

any more than small errors.
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5.11.10 Finance theory and time series analysis

An example of ARIMA model identification, estimation and forecasting in

the context of commodity prices is given by Chu (1978). He finds ARIMA

models useful compared with structural models for short-term forecast-

ing, but also finds that they are less accurate over longer horizons. It also

observed that ARIMA models have limited capacity to forecast unusual

movements in prices.

Chu (1978) argues that, although ARIMA models may appear to be com-

pletely lacking in theoretical motivation, and interpretation, this may not

necessarily be the case. He cites several papers and offers an additional

example to suggest that ARIMA specifications quite often arise naturally

as reduced form equations (see chapter 6) corresponding to some under-

lying structural relationships. In such a case, not only would ARIMA mod-

els be convenient and easy to estimate, they could also be well grounded

in financial or economic theory after all.

5.12 Forecasting using ARMA models in EViews

Once a specific model order has been chosen and the model estimated for

a particular set of data, it may be of interest to use the model to forecast

future values of the series. Suppose that the AR(2) model selected for the

house price percentage changes series were estimated using observations

February 1991--December 2004, leaving 29 remaining observations to con-

struct forecasts for and to test forecast accuracy (for the period January

2005--May 2007).

Once the required model has been estimated and EViews has opened a

window displaying the output, click on the Forecast icon. In this instance,

the sample range to forecast would, of course, be 169--197 (which should

be entered as 2005M01--2007M05). There are two methods available in

EViews for constructing forecasts: dynamic and static. Select the option

Dynamic to calculate multi-step forecasts starting from the first period

in the forecast sample or Static to calculate a sequence of one-step-ahead

forecasts, rolling the sample forwards one observation after each forecast

to use actual rather than forecasted values for lagged dependent variables.

The outputs for the dynamic and static forecasts are given in screenshots

5.2 and 5.3.

The forecasts are plotted using the continuous line, while a confidence

interval is given by the two dotted lines in each case. For the dynamic

forecasts, it is clearly evident that the forecasts quickly converge upon the

long-term unconditional mean value as the horizon increases. Of course,
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Screenshot 5.2

Plot and summary

statistics for the

dynamic forecasts

for the percentage

changes in house

prices using an

AR(2)

this does not occur with the series of one-step-ahead forecasts produced

by the ‘static’ command. Several other useful measures concerning the

forecast errors are displayed in the plot box, including the square root of

the mean squared error (RMSE), the MAE, the MAPE and Theil’s U-statistic.

The MAPE for the dynamic and static forecasts for DHP are well over

100% in both cases, which can sometimes happen for the reasons outlined

above. This indicates that the model forecasts are unable to account for

much of the variability of the out-of-sample part of the data. This is to be

expected as forecasting changes in house prices, along with the changes

in the prices of any other assets, is difficult!

EViews provides another piece of useful information -- a decomposition

of the forecast errors. The mean squared forecast error can be decomposed

into a bias proportion, a variance proportion and a covariance proportion.

The bias component measures the extent to which the mean of the forecasts

is different to the mean of the actual data (i.e. whether the forecasts are

biased). Similarly, the variance component measures the difference between

the variation of the forecasts and the variation of the actual data, while

the covariance component captures any remaining unsystematic part of the
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Screenshot 5.3

Plot and summary

statistics for the

static forecasts for

the percentage

changes in house

prices using an

AR(2)

forecast errors. As one might have expected, the forecasts are not biased.

Accurate forecasts would be unbiased and also have a small variance pro-

portion, so that most of the forecast error should be attributable to the

covariance (unsystematic or residual) component. For further details, see

Granger and Newbold (1986).

A robust forecasting exercise would of course employ a longer out-of-

sample period than the two years or so used here, would perhaps employ

several competing models in parallel, and would also compare the accu-

racy of the predictions by examining the error measures given in the box

after the forecast plots.

5.13 Estimating exponential smoothing models using EViews

This class of models can be easily estimated in EViews by double clicking

on the desired variable in the workfile, so that the spreadsheet for that

variable appears, and selecting Proc on the button bar for that variable

and then Exponential Smoothing. . . . The screen with options will appear

as in screenshot 5.4.
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Screenshot 5.4

Estimating

exponential

smoothing models

There is a variety of smoothing methods available, including single and

double, or various methods to allow for seasonality and trends in the

data. Select Single (exponential smoothing), which is the only smoothing

method that has been discussed in this book, and specify the estimation

sample period as 1991M1 – 2004M12 to leave 29 observations for out-

of-sample forecasting. Clicking OK will give the results in the following

table.

Date: 09/02/07 Time: 14:46

Sample: 1991M02 2004M12

Included observations: 167

Method: Single Exponential

Original Series: DHP

Forecast Series: DHPSM

Parameters: Alpha 0.0760

Sum of Squared Residuals 208.5130

Root Mean Squared Error 1.117399

End of Period Levels: Mean 0.994550
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The output includes the value of the estimated smoothing coefficient

(= 0.076 in this case), together with the RSS for the in-sample estimation

period and the RMSE for the 29 forecasts. The final in-sample smoothed

value will be the forecast for those 29 observations (which in this case

would be 0.994550). EViews has automatically saved the smoothed values

(i.e. the model fitted values) and the forecasts in a series called ‘DHPSM’.

Key concepts
The key terms to be able to define and explain from this chapter are

● ARIMA models ● Ljung--Box test

● invertible MA ● Wold’s decomposition theorem

● autocorrelation function ● partial autocorrelation function

● Box-Jenkins methodology ● information criteria

● exponential smoothing ● recursive window

● rolling window ● out-of-sample

● multi-step forecast ● mean squared error

● mean absolute percentage error

Review questions

1. What are the differences between autoregressive and moving average

models?

2. Why might ARMA models be considered particularly useful for financial

time series? Explain, without using any equations or mathematical

notation, the difference between AR, MA and ARMA processes.

3. Consider the following three models that a researcher suggests might

be a reasonable model of stock market prices

yt = yt−1 + ut (5.190)

yt = 0.5yt−1 + ut (5.191)

yt = 0.8ut−1 + ut (5.192)

(a) What classes of models are these examples of?

(b) What would the autocorrelation function for each of these

processes look like? (You do not need to calculate the acf, simply

consider what shape it might have given the class of model from

which it is drawn.)

(c) Which model is more likely to represent stock market prices from a

theoretical perspective, and why? If any of the three models truly

represented the way stock market prices move, which could
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potentially be used to make money by forecasting future values of

the series?

(d) By making a series of successive substitutions or from your

knowledge of the behaviour of these types of processes, consider

the extent of persistence of shocks in the series in each case.

4. (a) Describe the steps that Box and Jenkins (1976) suggested should

be involved in constructing an ARMA model.

(b) What particular aspect of this methodology has been the subject of

criticism and why?

(c) Describe an alternative procedure that could be used for this

aspect.

5. You obtain the following estimates for an AR(2) model of some returns

data

yt = 0.803yt−1 + 0.682yt−2 + ut

where ut is a white noise error process. By examining the characteristic

equation, check the estimated model for stationarity.

6. A researcher is trying to determine the appropriate order of an ARMA

model to describe some actual data, with 200 observations available.

She has the following figures for the log of the estimated residual

variance (i.e. log (σ̂ 2)) for various candidate models. She has assumed

that an order greater than (3,3) should not be necessary to model the

dynamics of the data. What is the ‘optimal’ model order?

ARMA(p,q) log(σ̂ 2)

model order

(0,0) 0.932

(1,0) 0.864

(0,1) 0.902

(1,1) 0.836

(2,1) 0.801

(1,2) 0.821

(2,2) 0.789

(3,2) 0.773

(2,3) 0.782

(3,3) 0.764

7. How could you determine whether the order you suggested for question

6 was in fact appropriate?

8. ‘Given that the objective of any econometric modelling exercise is to

find the model that most closely ‘fits’ the data, then adding more lags
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to an ARMA model will almost invariably lead to a better fit. Therefore a

large model is best because it will fit the data more closely.’

Comment on the validity (or otherwise) of this statement.

9. (a) You obtain the following sample autocorrelations and partial

autocorrelations for a sample of 100 observations from actual data:

Lag 1 2 3 4 5 6 7 8

acf 0.420 0.104 0.032 −0.206 −0.138 0.042 −0.018 0.074

pacf 0.632 0.381 0.268 0.199 0.205 0.101 0.096 0.082

Can you identify the most appropriate time series process for this

data?

(b) Use the Ljung–Box Q∗ test to determine whether the first three

autocorrelation coefficients taken together are jointly significantly

different from zero.

10. You have estimated the following ARMA(1,1) model for some time

series data

yt = 0.036 + 0.69yt−1 + 0.42ut−1 + ut

Suppose that you have data for time to t− 1, i.e. you know that

yt−1 = 3.4, and ût−1 = − 1.3

(a) Obtain forecasts for the series y for times t , t + 1, and t + 2 using

the estimated ARMA model.

(b) If the actual values for the series turned out to be −0.032, 0.961,

0.203 for t, t + 1, t + 2, calculate the (out-of-sample) mean squared

error.

(c) A colleague suggests that a simple exponential smoothing model

might be more useful for forecasting the series. The estimated

value of the smoothing constant is 0.15, with the most recently

available smoothed value, St−1 being 0.0305. Obtain forecasts for

the series y for times t , t + 1, and t + 2 using this model.

(d) Given your answers to parts (a) to (c) of the question, determine

whether Box–Jenkins or exponential smoothing models give the

most accurate forecasts in this application.

11. (a) Explain what stylised shapes would be expected for the

autocorrelation and partial autocorrelation functions for the

following stochastic processes:

● white noise

● an AR(2)

● an MA(1)

● an ARMA (2,1).
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(b) Consider the following ARMA process.

yt = 0.21 + 1.32yt−1 + 0.58ut−1 + ut

Determine whether the MA part of the process is invertible.

(c) Produce 1-,2-,3- and 4-step-ahead forecasts for the process given in

part (b).

(d) Outline two criteria that are available for evaluating the forecasts

produced in part (c), highlighting the differing characteristics of

each.

(e) What procedure might be used to estimate the parameters of an

ARMA model? Explain, briefly, how such a procedure operates, and

why OLS is not appropriate.

12. (a) Briefly explain any difference you perceive between the

characteristics of macroeconomic and financial data. Which of

these features suggest the use of different econometric tools for

each class of data?

(b) Consider the following autocorrelation and partial autocorrelation

coefficients estimated using 500 observations for a weakly

stationary series, yt :

Lag acf pacf

1 0.307 0.307

2 −0.013 0.264

3 0.086 0.147

4 0.031 0.086

5 −0.197 0.049

Using a simple ‘rule of thumb’, determine which, if any, of the acf

and pacf coefficients are significant at the 5% level. Use both the

Box–Pierce and Ljung–Box statistics to test the joint null hypothesis

that the first five autocorrelation coefficients are jointly zero.

(c) What process would you tentatively suggest could represent the

most appropriate model for the series in part (b)? Explain your

answer.

(d) Two researchers are asked to estimate an ARMA model for a daily

USD/GBP exchange rate return series, denoted xt . Researcher A

uses Schwarz’s criterion for determining the appropriate model

order and arrives at an ARMA(0,1). Researcher B uses Akaike’s

information criterion which deems an ARMA(2,0) to be optimal. The
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estimated models are

A : x̂t = 0.38 + 0.10ut−1

B : x̂t = 0.63 + 0.17xt−1 − 0.09xt−2

where ut is an error term.

You are given the following data for time until day z (i.e. t = z)

xz = 0.31, xz−1 = 0.02, xz−2 = −0.16

uz = −0.02, uz−1 = 0.13, uz−2 = 0.19

Produce forecasts for the next 4 days (i.e. for times z + 1, z + 2,

z + 3, z + 4) from both models.

(e) Outline two methods proposed by Box and Jenkins (1970) for

determining the adequacy of the models proposed in part (d).

(f) Suppose that the actual values of the series x on days z +1, z +2,

z + 3, z + 4 turned out to be 0.62, 0.19, −0.32, 0.72, respectively.

Determine which researcher’s model produced the most accurate

forecasts.

13. Select two of the stock series from the ‘CAPM.XLS’ Excel file, construct

a set of continuously compounded returns, and then perform a

time-series analysis of these returns. The analysis should include

(a) An examination of the autocorrelation and partial autocorrelation

functions.

(b) An estimation of the information criteria for each ARMA model order

from (0,0) to (5,5).

(c) An estimation of the model that you feel most appropriate given the

results that you found from the previous two parts of the question.

(d) The construction of a forecasting framework to compare the

forecasting accuracy of

i. Your chosen ARMA model

ii. An arbitrary ARMA(1,1)

iii. An single exponential smoothing model

iv. A random walk with drift in the log price levels (hint: this is

easiest achieved by treating the returns as an ARMA(0,0) - i.e.

simply estimating a model including only a constant).

(e) Then compare the fitted ARMA model with the models that were

estimated in chapter 4 based on exogenous variables. Which type

of model do you prefer and why?


